Tribhuvan University Institute of Science and Technology Kirtipur, Kathmandu Nepal

Final Examination 2073 September

Subject:Mathematics (Field and Galois theory)Full Marks: 60Course No.:Math 724Pass Marks: 30Level:M. Phil.(math)/I SemesterTime: 2:00 hr

Attempt any 5 questions. Each question carries equal marks. Write your answer in detail as far as possible.

- 1. Show that for any rational number r, the real number $\sin(r\pi)$ is algebraic. Hint: consider $e^{i\pi r}$
- 2. Let β be an algebraic complex number. Give the definition of the minimal polynomial f_{β} of β over \mathbb{Q} and prove that deg $f_{\beta} = [\mathbb{Q}[\beta] : \mathbb{Q}]$.
- 3. Show that $\mathbb{Q}[\sqrt[3]{7} \sqrt{2}] = \mathbb{Q}[\sqrt[3]{7} + \sqrt{2}]$ and compute the dimension $[\mathbb{Q}[\sqrt[3]{7} + \sqrt{2}] : \mathbb{Q}]$ justifying your answer.
- 4. Show that any finite extension of fields is necessarily algebraic.
- 5. Give the definition of contructible number and determine which among $\sqrt[6]{2}$, $\sqrt[4]{27}$ and $\sqrt{5} \sqrt{3}$ is constructible.
- 6. Describe the splitting field of the polynomial $(X^4 7X)(X^2 + 3)$ and write down the elements of its Galois group.
- 7. State in its full generality the Fundamental Theorem of Galois Theory (NOTE: sometimes it is also called the Galois Correspondance Theorem).